Mechanism of magnetic field effect in cryptochrome
نویسندگان
چکیده
Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing ‘sixth’ sense that allows them to orient themselves in the Earth’s magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of animal eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a theoretical analysis method for identifying cryptochrome’s signaling reactions involving comparison of measured and calculated reaction kinetics in cryptochrome. Application of the method yields an exemplary light-driven reaction cycle, supported through transient absorption and electron-spin-resonance observations together with known facts on avian magnetoreception. The reaction cycle permits one to predict magnetic field effects on cryptochrome activation and deactivation. The suggested analysis method gives insight into structural and dynamic design features required for optimal detection of the geomagnetic field by cryptochrome and suggests further experimental and theoretical studies.
منابع مشابه
Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
The ability of some animals, most notably migratory birds, to sense magnetic fields is still poorly understood. It has been suggested that this "magnetic sense" may be mediated by the blue light receptor protein cryptochrome, which is known to be localized in the retinas of migratory birds. Cryptochromes are a class of photoreceptor signaling proteins that are found in a wide variety of organis...
متن کاملCryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae
The mechanisms that facilitate animal magnetoreception have both fascinated and confounded scientists for decades, and its precise biophysical origin remains unclear. Among the proposed primary magnetic sensors is the flavoprotein, cryptochrome, which is thought to provide geomagnetic information via a quantum effect in a light-initiated radical pair reaction. Despite recent advances in the rad...
متن کاملMicro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles
Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...
متن کاملMicro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles
Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...
متن کاملMillitesla magnetic field effects on the photocycle of an animal cryptochrome
Drosophila have been used as model organisms to explore both the biophysical mechanisms of animal magnetoreception and the possibility that weak, low-frequency anthropogenic electromagnetic fields may have biological consequences. In both cases, the presumed receptor is cryptochrome, a protein thought to be responsible for magnetic compass sensing in migratory birds and a variety of magnetic be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011